3 Sketsalah grafik fungsi berikut ini. a. y = 2x (akar 2) + 9x b. y = 8Γ—2 βˆ’ 16x + 6 matematika kelas 9 latihan 2.3 Sumbu Simetri dan Titik Optimum halaman 102 103 bab 2 semester 1 kurikulum 2013 edisi revisi 2018 soal dan jawaban soal MTK kelas 3 smp mts bab 2 Persamaan dan Fungsi Kuadrat

Sketsalah grafik fungsi berikut ini y = 2x2 + 9x, pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum materi Semester 1. Silahkan kalian pelajari materi Bab II Persamaan dan Fungsi Kuadrat pada buku matematika kelas IX Kurikulum 2013 Revisi 2018. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya, dimana kalian telah mengerjakan soal Tentukan Sumbu Simetri Grafik Fungsi di Bawah Ini y = 2Γ—2 – 5x secara lengkap. Latihan Sumbu Simetri dan Titik Optimum 2. Tentukan nilai optimum fungsi berikut ini. a. y = –6x2 + 24x βˆ’ 19 b. y = 2/5x2 – 3x + 15 c. y = -3/4x2 + 7x βˆ’ 18 Jawaban a. y = -6x^2 + 24x – 19 a = -6 b = 24 c = -19 Maka -D/4a = -b2 – 4ac / 4c -242 – 4 -6 -19 / 4-6 = -576 – 456/-24 -120/-24 = 5 b. y = 2/5Γ—2 – 3x + 15 a = 2/5 b = -3 c = 15 Maka -D/4a = -b2 – 4ac / 4c -32 – 42/5 15 / 4. 2/5 -9-24/8/5 15/ 8/5 = = 75/8 c. y = -3/4Γ—2 + 7x – 18 a = -3/4 b = 7 c = -18 Maka -D/4a = -b2 – 4ac / 4c -72 – 4-3/4 -18 / 4 -3/4 =-49-54 / -3 5/-3 3. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x b. y = 8x2 βˆ’ 16x + 6 Jawaban a. y = 2Γ—2 + 9x Sumbu x saat y 2Γ—2 + 9x = 0 x 2x + 9 = 0 maka x = 0 atau 2x + 9 = 0 2x = -9 x = -9/2 jadi titik 0,0 ; -9/2,0 sumbu y saat x = 0 y = 2Γ—2 + 9x y = 202 + 90 y = 0 Maka titik 0,0 Jadi titik baliknya adalah xa = -b/2a = -9/22 = -9/4 ya = -b2 – 4ac / 4a ya = -b2 – 4ac / 4a ya = – 92 – / 42 ya = – 81 – 0 / 8 ya = -81 / 8 Koordinat titik balik -9/4, -81/8 -2,25 ; -10,125 b. y = 8Γ—2 – 16x + 6 Sumbu x ketika y = 0 8x^2 – 16x + 6 = 0 4x – 22x – 3 = 0 Maka 4x – 2 = 0 4x = 2 x = 2/4 = 1/2 dan 2x – 3 = 0 2x = – 3 x = -3/2 Maka titik 1/2,0 ; -3/2,0 sumbu y ketika x = 0 y = 8Γ—2 – 16x + 6 y = 802 – 160 + 6 y = 6 Maka Koordinat 0,6 Jadi titik baliknya adalah xa = -b/2a = -16 / 28 = 16/16 = 1 ya = 812 – 161 + 6 ya = 8 – 16 + 6 ya = -2 Koordinat 1, -2 Jadi gambar grafiknya seperti di bawah ini 4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan suku ke 100. 5. Diketahui suatu barisan 0, –9, –12, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan nilai minimum dari barisan tersebut. Jawaban, buka disini Diketahui Suatu Barisan 1 7 16 Suku Ke-n Dari Barisan Tersebut Dapat Dihitung dengan Rumus Demikian pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum pada buku semester 1 kurikulum 2013 revisi 2018. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar!

Jawaban: sketsa grafik seperti gambar terlampir. Untuk menjawab soal ini perlu digambar terlebih dahulu kurva nya dengan mencari titik potong dengan sumbu x, sumbu y, serta dicari titik puncak/balik. Jika diberikan persamaan y = ax^2 + bx + c, maka titik baliknya adalah (xp,yp) dengan xp = -b/ (2a) yp = (b^2-4ac)/ (-4a) Kurva y=2x^2+9x

August 27, 2020 Latihan Halaman 102 - 103 Bab 2 Persamaan dan Fungsi Kuadrat Latihan Matematika MTK Kelas 9 SMP/MTS Semester 1 K13 Jawaban Latihan Halaman 102 Matematika Kelas 9 Persamaan dan Fungsi Kuadrat Jawaban Latihan Matematika Kelas 9 Halaman 102 Persamaan dan Fungsi Kuadrat Jawaban Latihan Halaman 102 MTK Kelas 9 Persamaan dan Fungsi Kuadrat Jawaban Latihan Halaman 102 Matematika Kelas 9 Persamaan dan Fungsi Kuadrat Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Bab 2 Persamaan dan Fungsi Kuadrat Latihan Hal 102, 103 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 102, 103. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 9 dapat menyelesaikan tugas Persamaan dan Fungsi Kuadrat Kelas 9 Halaman 102, 103 yang diberikan oleh bapak ibu/guru. Kunci Jawaban MTK Kelas 9 Semester 1. Kunci Jawaban Matematika Kelas 9 Halaman 102, 103 Latihan 1. Tentukan sumbu simetri grafik fungsi di bawah ini. a. y = 2x2 βˆ’ 5x b. y = 3x2 + 12x Related Kunci Jawaban Matematika Kelas 9 Halaman 92, 93 Latihan Kunci Jawaban Matematika Kelas 9 Halaman 81, 82 Latihan Kunci Jawaban Matematika Kelas 8 Halaman 86 - 88 Ayo Kita Berlatih c. y = –8x2 βˆ’ 16x βˆ’ 1 Jawaban a Sumbu simetrinya adalah x = -b/2a = - -5 / 2x2 = 5/4 b Sumbu simetrinya adalah x = -b/2a = - 12 / 2x3 = -2 c Sumbu simetrinya adalah x = -b/2a = - -16 / 2x-8 = -1 2. Tentukan nilai optimum fungsi berikut ini. a. y = –6x2 + 24x βˆ’ 19 b. y =2/5 x2 – 3x + 15 c. y = -3/4 x2 + 7x βˆ’ 18 Jawaban 3. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x b. y = 8x2 βˆ’ 16x + 6 Jawaban 4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan suku ke 100. Jawaban Dari persamaan diatas akan didapat a + b + c = 1 persamaan 1 4a + 2b + c = 7 persamaan 2 9a + 3b + c = 16 persamaan 3 *Eliminasi persamaan 1 dan 2* Didapat 3a + b = 6 persamaan 4 *Eliminasi persamaan 2 dan 3* Didapat 5a + b = 9 persamaan 5 *Eliminasi persamaan 4 dan 5* Didapat 2a = 3 atau a = 3/2 *Subtitusi nilai a ke persamaan 4* Didapat 33/2 + b = 6 atau b = 3/2 *Subtitusi nilai a dan b ke persamaan 1* Didapat 3/2 + 3/2 + c = 1 atau c = -2 Maka ditemukan persamaan umum rumus Un = 3/2n2 + 3/2n + c U100 = 3/21002 + 3/2100 + -2 = Jadi, suku ke 100 nya adalah 5. Diketahui suatu barisan 0, –9, –12, .... Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan nilai minimum dari barisan tersebut. Jawaban *Langkah-langkah seperti jawaban nomor 4* Maka ditemukan persamaan umum rumus Un = 3i2 -18i + 15 Nilai minimum dari barisan tersebut ym = - D/4a = - b2 - 4ac / 4a Nilai minimum = - -182 - 4315 / 43 = - 324 - 180 / 12 = -144/12 = -12 Jadi, nilai minimum barisan tersebut adalah -12. 6. Fungsi kuadrat y = fx melalui titik 3, –12 dan 7, 36. Jika sumbu simetrinya x = 3, tentukan nilai minimum fungsi fx. Jawaban Jadi, nilai minimum fungsi fx adalah -12. 7. Bila fungsi y = 2x2 + 6x βˆ’ m mempunyai nilai minimum 3 maka tentukan m. Jawaban Sumbu simetrinya adalah x = -b / 2a = - 6 / 2x2 = -6/4 , subtitusi nilai x kedalam fungsi y 2-6/42 + 6-6/4 - m = 3 m = 236/16 - 9 - 3 m = -15/2 Jadi, nilai m adalah -15/2. 8. Dari tahun 1995 sampai 2002, banyaknya pelanggan telepon genggam N dalam juta orang dapat dimodelkan oleh persamaan N = 17,4x2 + 36,1x + 83,3, dengan x = 0 merepresentasikan tahun 1995. Pada tahun berapa banyaknya pelanggan mencapai nilai maksimum? Jawaban Dilihat dari persamaan N, nilai N akan selalu lebih besar apabila x + 1 > x. 1995 nilai x = 0 1996 nilai x = 1 1997 nilai x = 2 2002 nilai x = 7 Sehingga pelanggan maksimum akan terjadi pada tahun 2002 dengan x = 7, subtitusi x ke persamaan N N = 17,4x2 + 36,1x + 83,3 = 17,472 + 36,17 + 83,3 = 1,1886 miliar pengguna Jadi banyak pelanggan mencapai nilai maksimum terjadi pada tahun 2002 dengan jumlah pelanggan 1,1886 miliar pengguna. 9. Jumlah dua bilangan adalah 30. Jika hasil kali kedua bilangan menghasilkan nilai yang maksimum, tentukan kedua bilangan tersebut. Jawaban Misalkan dua bilangan tersebut adalah a, b dan = 30 - b fb = a Γ— b = 30 - b Γ— b = 30b - b2 nilai turunan = 0 30 - 2b = 0 2b = 30 b = 15 a = 30 - b a = 30 - 15 a = 15 Jadi, nilai kedua bilangan tersebut adalah 15 dan 15. 10. Selisih dua bilangan adalah 10. Jika hasil kali kedua bilangan menghasilkan nilai yang minimum, tentukan kedua bilangan tersebut. Jawaban Misalkan dua bilangan tersebut adalah a, b dengan a > b maka a = 10 + b sehingga fb = a Γ— b = 10 + b Γ— b = 10b + b2 nilai turunan = 0 10 + 2b = 0 2b = -10 b = -5 a = 10 + b a = 10 - 5 a = 5 Jadi, nilai kedua bilangan tersebut adalah -5 dan 5.

Sketsalahgrafik fungsi berikut ini. A. y = 2xΒ² + 9x B. y = 8xΒ² - 16x + 6 Jawaban Pendahuluan. karakteristik grafik berdasarkan nilai determinan. 1) Jika D > 0 grafik akan memotong sumbu x di dua titik. 2) Jika D = 0 grafik menyinggung sumbu x. 3) Jika D < 0 grafik tidak memotong sumbu x. karakteristik grafik berdasarkan nilai a,

MatematikaALJABAR Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0146Perhatikan grafik fungsi kuadrat fx = ax^2 + bx + c ber...Perhatikan grafik fungsi kuadrat fx = ax^2 + bx + c ber...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...0648Lukiskan grafik fungsi kuadrat fx=x^2+6x+5, untuk domai...Lukiskan grafik fungsi kuadrat fx=x^2+6x+5, untuk domai...

1 Tentukan sumbu simetri grafik fungsi di bawah ini. a. y = 2x2 βˆ’ 5x b. y = 3x2 + 12x Related Kunci Jawaban Matematika Kelas 9 Halaman 92, 93 Latihan 2.2 Kunci Jawaban Matematika Kelas 9 Halaman 81, 82 Latihan 2.1 Kunci Jawaban Matematika Kelas 8 Halaman 86 - 88 Ayo Kita Berlatih 3.1 c. y = -8x2 βˆ’ 16x βˆ’ 1 Jawaban :
Sketsalah grafik fungsi berikut ini. A. y=2xΒ²+9x B. y=8xΒ²-16x+6 Jawaban a. fungsi y = 2xΒ² + 9x memotong sumbu x pada saat y = 0 y = 2xΒ² + 9x 0 = 2xΒ² + 9x x2x + 9 = 0 x = 0 atau 2x + 9 = 0 2x = -9 x = – ⁹/β‚‚ memotong sumbu y pada saat x = 0 y = 2xΒ² + 9x y = 20Β² + 90 y = 0 + 0 y = 0 determinan d = bΒ² – 4ac = 9Β² – = 81 – 0 = 81 titik puncak fungsi atau titik balik = -b/2a , -d/4a = -⁹/β‚„, ⁻⁸¹/β‚ˆ a = 2 a > 0 grafik menghadap keatas B. y = 8xΒ² – 16x + 6 memotong sumbu x ketika y = 0 8xΒ² – 16x + 6 = 0 4x – 2 2x – 3 = 0 4x – 2= 0 atau 2x – 3 = 0 4x = 2 2x = 3 x = 2/4 = 1/2 x = 3/2 memotong sumbu y pada saat x = 0 y = 8xΒ² – 16x + 6 y = – + 6 y = 6 titik balik xa = -b/2a = 16/16 = 1 ya = – + 6 = 8 – 16 + 6 = -2 714 total views, 1 views today
Sketsalahgrafik fungsi berikut ini y=2Γ—^2+9x - 9794150 lizazainal lizazainal 10.03.2017 Sekolah Menengah Pertama terjawab β€’ terverifikasi oleh ahli Sketsalah grafik fungsi berikut ini y=2Γ—^2+9x 1 Lihat jawaban Iklan Iklan Mamanosz Mamanosz Kategori : Matemtika Bab Fungsi Kuadrat Kelas : X (1 SMA) Jawaban ada di lampiran. min krena a
.
  • c8jp4d5gc5.pages.dev/631
  • c8jp4d5gc5.pages.dev/28
  • c8jp4d5gc5.pages.dev/521
  • c8jp4d5gc5.pages.dev/259
  • c8jp4d5gc5.pages.dev/282
  • c8jp4d5gc5.pages.dev/209
  • c8jp4d5gc5.pages.dev/849
  • c8jp4d5gc5.pages.dev/735
  • c8jp4d5gc5.pages.dev/218
  • c8jp4d5gc5.pages.dev/891
  • c8jp4d5gc5.pages.dev/502
  • c8jp4d5gc5.pages.dev/562
  • c8jp4d5gc5.pages.dev/694
  • c8jp4d5gc5.pages.dev/734
  • c8jp4d5gc5.pages.dev/742
  • sketsalah grafik fungsi berikut ini y 2x2 9x